Leveraging Network-Bound Disk Encryption at Enterprise Scale

Tang and Clevis

Tang and Clevis

Network-Bound Disk Encryption (NBDE) adds scaling to LUKS by automated disk unlocking on system startup.

Why should I encrypt disks? If you dont want to see your corporate and private data leaked, you should do so as an additional security measure.

Use cases

There are basically two use cases for disk encryption. The first one is to prevent data leaks when a device gets stolen or lost (mobile computers, unsecured server rooms etc.). Theft of devices is usually not a threat for enterprise grade data centers with physical security.

Here comes the second use case for this enterprise grade data centers: At some point in time, disks will get disposed, either because of a defect or they get outdated technology wise. That means a data leak is possible at the end of the disks life cycle. A defect disk can not be wiped at all. For someone with deep pockets, there is still a chance to at least partially access the data. Wiping six TiB disks takes many hours just for overwriting them with zeros, not even with random data. An encrypted disk without a passphrase set can just simply get disposed without considering if it needs to be wiped or physically destroyed.

Note: Disk encryption does not help protecting you from a data theft by a person having access to the data, it also does not help against misbehaving software.

As you can imagine, it is a good idea to encrypt your storage. The standard for disk encryption in Linux is LUKS (Linux Unified Key Setup).

Adding Tang and Clevis for scaling

Unfortunately LUKS does not scale at all, because the passphrase must be entered manually on system startup, a no-go for data center operations. Tang and Clevis adds the scaling factor to the game.

Tang is the server component, Clevis and LUKS-meta the client component. The secret itself is stored on the client, the client asks the server for the data needed for the decryption of the key stored in the LUKS meta data. For more information on the crypto algorithms used, please see the Slide Deck “Tang and Clevis” by Fraser Tweedale

Availability and support

Tang and clevis have been added to RHEL 7.4 and are supported. The packages tang-nagios and clevis-udisk2 are in technical preview phase and are not supported. The packages are included in the base subscription.

It is also available for Fedora as well.

Set up the Tang servers

Setting up a Tang server is straight forward. For redundancy, please set up at least two Tang servers, a maximum of seven Tang Servers are supported by the client, which corresponds to the number of LUKS slots (eight) minus the one used for the initial passphrase.

[root@tang1 ~]# yum -y install tang
[root@tang1 ~]# systemctl enable --now tangd.socket
[root@tang1 ~]# jose jwk gen -i '{"alg":"ES512"}' -o /var/db/tang/new_sig.jwk
[root@tang1 ~]# jose jwk gen -i '{"alg":"ECMR"}' -o /var/db/tang/new_exc.jwk

Display the Thumbprint to be added to the Kickstart later on.

[root@tang1 ~]# jose jwk thp -i /var/db/tang/new_sig.jwk

Automated client setup during Kickstart

Be aware that you can run into problems when re-provisioning a system that contains old LUKS keys. You probably want to wipe them. In the following setup, all the slots are located on the second partition.

# Wipe LUKS keys on the second partition of disk vda
cryptsetup isLuks /dev/vda2  && dd if=/dev/zero of=/dev/vda2 bs=512 count=2097152

part /boot      --fstype ext2 --size=512 --ondisk=vda
part pv.0       --size=1 --grow --ondisk=vda --encrypted --passphrase=dummy-master-pass

volgroup vg_luksclient pv.0

logvol /        --name=lv_root    --vgname=vg_luksclient --size=4096
logvol /home    --name=lv_home    --vgname=vg_luksclient --size=512 --fsoption=nosuid,nodev
logvol /tmp     --name=lv_tmp    --vgname=vg_luksclient --size=512 --fsoption=nosuid,nodev,noexec
logvol /var     --name=lv_var    --vgname=vg_luksclient --size=2048 --fsoption=nosuid,nodev
logvol /var/log --name=lv_var_log --vgname=vg_luksclient --size=2048 --fsoption=nosuid,nodev
logvol swap     --fstype swap --name=lv_swap    --vgname=vg_luksclient --size=4096

Be aware that the transfer of the Kickstart file will be done in clear text, that means that this dummy-master-pass is exposed. It should be automatically removed. You can add a master key via a secure way after the installation with Ansible, Puppet or simply manually via SSH.

Ensure you have the clevis-dracut package installed so that the init ramdisk will get created in the right way.


In the %post section of the Kickstart file, add the following to register your system to the Tang servers.

clevis bind luks -f -k- -d /dev/vda2 tang '{"url":"http://tang1.example.com","thp":"vkaGTzcBNEeF_X5KX-w9754Gl80"}' <<< "dummy-master-pass"
clevis bind luks -f -k- -d /dev/vda2 tang '{"url":"http://tang2.example.com","thp":"x_KcDG92bVP3SUL9KOzmzps4sZg"}' <<< "dummy-master-pass"

In case you want to remove the master password, put the following line into your %post section of the Kickstart file:

cryptsetup luksRemoveKey /dev/vda2 - <<<"dummy-master-pass"

Usage of a passphrase

There are pros and cons about doing so. On one hand, if all Tang servers are unavailable, there is not a slight chance to access the data if there is no master password set. On the other hand, a master password can be leaked and it should be changed from time to time which needs to be automated (i.e. with Ansible) to scale.

I personally tend to use a master password. Choose wisely depending on your specific use case if you set a master password or not.

Good to know

Be aware that the password prompt on system startup will always show up. It disappears automatically after a few seconds if a Tang server have been reached.


The following documents helps you further to get an idea about the Tang/Clevis setup:

A nice presentation from a conference is available here: https://www.usenix.org/conference/lisa16/conference-program/presentation/atkisson

Another more technical presentation is available here: http://redhat.slides.com/npmccallum/sad#/

Important commands

There are a few LUKS and clevis related commands you should know about.


Cryptsetup is used to handle the LUKS slots, adding and removal of passphrases. More information is available in man 8 cryptsetup


luksmeta gives you access to the meta data of LUKS. I.e. showing which slots are in use:

[root@luksclient ~]# luksmeta show -d /dev/vda2 
0   active empty
1   active cb6e8904-81ff-40da-a84a-07ab9ab5715e
2   active cb6e8904-81ff-40da-a84a-07ab9ab5715e
3   active cb6e8904-81ff-40da-a84a-07ab9ab5715e
4 inactive empty
5 inactive empty
6 inactive empty
7 inactive empty
[root@luksclient ~]#

The following command is reading the meta data and put the encrypted content to the file meta

luksmeta load -d /dev/vda2 -s 1  > meta

It looks like this:


You can decrypt it:

[root@luksclient ~]# clevis decrypt tang < meta 
OTQy6NGfqTjppwIrrM4cc15zr-sxy5PPmKExHul1m-pcMjEHjGdoN5uqD9vcEiuMM56VapPV_LedXYEkktYO-g[root@luksclient ~]#

OTQy6NGfqTjppwIrrM4cc15zr-sxy5PPmKExHul1m-pcMjEHjGdoN5uqD9vcEiuMM56VapPV_LedXYEkktYO-g is the cleartext passphrase returned. It actually can be used to type it in the console, I recommend a serial console where you can copy-paste 😉

If you run the same command again when both Tang servers are down, you will get an error:

[root@luksclient ~]# clevis decrypt tang < meta
Error communicating with the server!
[root@luksclient ~]#

As you can see, you don’t need to provide a Tang Server URL.


Lsblk is a nice little tool which shows the available storage in a tree. You can see the different layers of the storage subsystem.

[root@luksclient ~]# lsblk 
NAME                                          MAJ:MIN RM  SIZE RO TYPE  MOUNTPOINT
vda                                           252:0    0   20G  0 disk  
├─vda1                                        252:1    0  512M  0 part  /boot
└─vda2                                        252:2    0 19.5G  0 part  
  └─luks-f0a70f08-b745-429f-ba8e-ec07e8953c3d 253:0    0 19.5G  0 crypt 
    ├─vg_luksclient-lv_root                   253:1    0    4G  0 lvm   /
    ├─vg_luksclient-lv_swap                   253:2    0    4G  0 lvm   [SWAP]
    ├─vg_luksclient-lv_var_log                253:3    0    2G  0 lvm   /var/log
    ├─vg_luksclient-lv_var                    253:4    0    2G  0 lvm   /var
    ├─vg_luksclient-lv_tmp                    253:5    0  512M  0 lvm   /tmp
    └─vg_luksclient-lv_home                   253:6    0  512M  0 lvm   /home
[root@luksclient ~]# 


If you want to play with JSON, install the package yajl.

With json_reformat you can minimize JSON and you are required to do so as clevis encrypt sss does not allow spaces, it fails.

Lets reformat this:

[root@luksclient ~]# echo '{"t": 1,"pins": {"tang": [{"url": "http://tang1.example.com"}, {"url": "http://tang2.example.com"}]}}'|json_reformat -m && echo ""
[root@localhost ~]# 

How to figure out to which servers the client is enrolled

I was curious how clevis figures out what Tang server to connect to. There is nothing written to the initrd, that means it must be stored somewhere in the LUKS metadata. It was taking me some time to figure out how it works.

Just decode the meta data to JSON:

 luksmeta load -d /dev/vda2 -s 1|jose b64 dec -i- |json_reformat 

Unfortunately the JSON seems to be invalid, at least json_reformat brings an error parse error: premature EOF. However, you will see the URL.

Test scenarios

I made a few tests with to figure out how Tang and Clevis works when something is going south.

Tang server(s) not available during system installatioon

If only one Tang server is available, installation work, server gets enrolled to only one Tang server. The server must be enrolled to the second Tang server manually after it came up again.

If both servers are down during installation, the installation finished successful, the temporary passphrase is still active as LUKS will deny removing the last passphrase available. Of course, the LUKS metadata is not available. You can enroll the servers manually after one or both servers come back online. Remember to remove the temporary passphrase afterwards.

Tang Server(s) not available during reboot

If one Tang server is not available, the other one is used, no impact.

If both servers are down, Plymouth asks for the LUKS passphrase. If you removed the the passphrase, you will not be able to boot the server. After starting one or both Tang servers, boot continues.


Tang and Clevis are both very young projects and not yet mature. I’ve figured out the following drawbacks:

Missing Registry

At the moment there is no way to report which servers are registered to what Tang server. This makes it hard to check from a central point if a server is really registered to two (or more) Tang servers to ensure smooth operation in the case of a failed Tang server.

This is particular true if one (or more) Tang server is down during install time of the client system. As a workaround, set up a monitoring script that checks if there are two active slots. I.e.

if [ $(luksmeta show -d /dev/vda2|grep " active"|grep -v empty|wc -l) -ne 2 ] || [ $? -eq 0 ]; then
        echo "Something is wrong with the LUKS metadata, please check"|mail -s "LUKS Metadata failure" monitoring@example.com


Logging of Tang requests is very basic at the moment, some improvement is needed here as well. Again, the documentation for the return codes is lacking


When using more than one Tang server, always that one defined in the first slot be be accessed. There is no round-robin or similar load-balancing method. This means that that the sequence of Tang Server must be shuffled on the client which involves some logic in the Kickstart file.

One Tang server should be able to handle more than 2k requests per second, so the problem only kicks in very large environments, where more than 2000 server are booting (or getting installed) at the same time.


Its a brand new project using completely new ideas and methods. At the moment not much experience is there, an issue that will be solved over time.


There is almost no documentation available which goes beyond a few lines to show how to set up the server and client. Whats missing is how to troubleshoot the environment. Another missing part is how to handle key rotation, its unclear for me if and what has to be done on the client.

Easy-to-read documentation is important, in particular for Tang and Clevis which is using some new style die-hard cryptographic mathematics.


Both, client and server have a very small footprint and are performing well. The idea of Tang and Clevis is brilliant and a first incarnation is ready to use. Due to the drawbacks mentioned above I think it is not yet ready for production and it will take a while until it is.

Due to the nature of the project, stability and reliability is a key point, that is why people should test it and provide feedback.

I would like to thank the involved engineers, cool stuff.

Have fun:-)

Blueborne – How to disable Bluetooth in Fedora

Yesterday 2017-09-13 Redhat released infomation about the mitigation of the Blueborne vulnerability in RHEL: https://access.redhat.com/security/vulnerabilities/blueborne.

For Fedora the new updates are probably still in the build queue and/or being QAed by the community. For a quick fix, you can disable Bluetooth similar than in RHEL:

Stopping Bluetooth related service

systemctl stop bluetooth.service
systemctl disable bluetooth.service
systemctl mask bluetooth.service

Disable the Kernel modules

echo "install bnep /bin/true" >> /etc/modprobe.d/disable-bluetooth.conf
echo "install bluetooth /bin/true" >> /etc/modprobe.d/disable-bluetooth.conf
echo "install btusb /bin/true" >> /etc/modprobe.d/disable-bluetooth.conf
echo "install btintel /bin/true" >> /etc/modprobe.d/disable-bluetooth.conf
echo "install btrtl /bin/true" >> /etc/modprobe.d/disable-bluetooth.conf
echo "install btbcm /bin/true" >> /etc/modprobe.d/disable-bluetooth.conf

Removing the Kernel Modules from a running System

  rmmod bnep
  rmmod btusb
  rmmod btintel
  rmmod btrtl
  rmmod btbcm
  rmmod bluetooth

Improve your bash shell working experience

This article shows some hints how to improve your bash shell working experience to reach higher productivity. Just simple shortcuts that are not so well known.

Using the History

The bash history is underestimated when it comes to usability. Here some nice stuff to do with the history.

Search the history

Every command is kept in the history. The simplest way to use the history is using the cursor-up/down keys. Most users are aware or [ctrl]-r. Usually you hit [ctrl]-r (r like reverse search) several times and miss the command, roll your eyes, hit [ctrl]-c and do it again. Why not using forward search with [ctrl]-s in such a case? Well, that suspends your terminal. It comes from the ancient times and is not needed anymore.

Turn off terminal suspension

echo "stty -ixon" >> /etc/profile

Now you can search the history back and forward by using [ctrl]-r and [ctrl]-s.

Using another command with the same last argument

When you i.e. do ls a file and decide to edit it, you don’t need to retype the whole file path or using the mouse to copy-paste it. Use the [Alt]-. (dot) combination. It inserts the last argument used. So after ls -la /tmp/file.txt you type vi [Alt].. Review and hit enter to execute.

You can also reuse other than the last arguments, but this is more complex and does not speed up things a lot, copy-paste with your mouse is usually faster in such a case.

Forgot to sudo?

When you want to cat i.e. /etc/sssd/sssd.conf you need root access. As a normal user, access is denied.

[luc@fedora ~]$ cat /etc/sssd/sssd.conf
cat: /etc/sssd/sssd.conf: Permission denied
[luc@fedora ~]$ sudo !!
sudo cat /etc/sssd/sssd.conf

The !! also called bash bang does the trick. It just repeats the same command as used before which all arguments. Be aware that the command is executed immediately.

Bash can copy-paste as well!

Copy-paste is not only available in graphical environments but in the bash shell as well.

If you need to type some different commands all with the same arguments, cut the stuff. Position the curser to the position on the line from where you want to copy and hit [ctrl]-k. When you want to paste, hit [ctrl]-y.

You may also achieve that using othercommand !*. Using !(bash bang) can be dangerous because the command will be executed immediately, the copy-paste method is more safe.

That also works with single words etc. basically everything where you cut or delete some stuff like [alt]-d, [ctrl]-w, [ctrl]-u

Using an editor for copy-paste from websites and word processors

There are a number of reasons why you don’t want to directly copy-paste to a shell. Sometimes the source content has not properly escaped line ends or its just garbage from word processors. You may want to review and edit appropriately before fire the command. There is a super lazy and convenient trick to do so.

The security usecase

Copy-Paste from a Website is a security nightmare. Copy-Paste the following two lines into an editor and you see what I mean.

Sample command
echo “Dont copy-paste”

Second sample

The HTML code used for that is:

Sample command<span style="font-size: 0; position: absolute; left: -100px; top: -100px"><br>:echo "Dont copy-paste"</span>
Second sample

Nice! Use an editor before pasting anything in a terminal, for the sake of security.

The word processor garbage usecase

Lot of documentation is written in word processors such as Libreoffice, MS-Office and others. They replace double hyphens to a single one and nasty stuff such as single quotes to backticks. Just for a thing called usability.

When copy-paste that stuff, you probably want to review and edit it first.

Set the EDITOR environment variable

If you are too lazy to fire up vim, you can set the EDITOR environment variable to an editor of your choice (vim, emacs, nano, whatever), system wide in /etc/profile or /etc/bashrc. A better idea is to put it in ~/.profile or ~/.bashrc.

echo "export EDITOR=vim" >>: ~./bashrc

Afterwards you can just hit [ctrl]-x-e and vim starts up. When save and exit vim, the command will be executed.

What are my Keybindings?

If you wonder what kind of shortcuts are defined in a shell, a lot are. use bind -p to show them.

Have fun 🙂

Using Ansible to automate oVirt and RHV environments

Bored of clicking in the WebUI of RHV or oVirt? Automate it with Ansible! Set up a complete virtualization environment within a few minutes.

Some time ago, Ansible includes a module for orchestrating RHV environments. It allows you to automate the setup of such an environment as well as automating daily tasks.


Of course, Ansible can not automate all tasks, you need to set up a few things manually. Lets assume you want your oVirt-engine or RHV-manager running outside of the RHV environment which has some benefits when it comes to system management.

  • Setup of at least two hypervisor machines with RHEL7 latest
  • Setup of the RHV-M machine with RHEL7 latest
  • Having the appropriate Redhat Subscriptions
  • A machine with Ansible 2.3 installed

Set up the inventory file

Ensure you have a inventory file like the following in place,i.e. in /etc/ansible/hosts



Helper files


engine_url: https://rhv-m.example.com/ovirt-engine/api
username: admin@internal
password: redhat
engine_cafile: /etc/pki/ovirt-engine/ca.pem
datacenter: Default
cluster: Default

rhsm_user: user@example.com
rhsm_pass: secret

Please adjust the following example answer file for your environment.


# action=setup                                                                                                        

Prepare your machines

The first Playbook ensures your machines are subscribed to RHSM and the needed repos are made available.


- hosts: rhv,hypervisors
    - ovirt-engine-vars.yml
  - name: Register the machines to RHSM
      state: present
      username: "{{ rhsm_user }}"
      password: "{{ rhsm_pass }}"
      pool: '^(Red Hat Enterprise Server|Red Hat Virtualization)$'

  - name: Disable all repos
    command: subscription-manager repos --disable=*

- hosts: hypervisors
    - name: Enable required repositories
      command: subscription-manager repos --enable=rhel-7-server-rpms --enable=rhel-7-server-rhv-4-mgmt-agent-rpms
- hosts: rhv

    - name: Enable required repositories
      command: subscription-manager repos --enable=jb-eap-7-for-rhel-7-server-rpms --enable=rhel-7-server-rhv-4-tools-rpms --enable=rhel-7-server-rhv-4.1-rpms --enable=rhel-7-server-supplementary-rpms --enable=rhel-7-server-rpms

    - name: Copy Answer File
        src: rhv-setup.conf
        dest: /tmp/rhv-setup.conf

    - name: Run RHV setup
      shell: |
        engine-setup --config-append=/tmp/rhv-setup.conf

Run the playbook

user@ansible playbooks]$ ansible-playbook -k install_rhv.yml 
SSH password: 

PLAY [rhv,hypervisors] ************************************************************************************************************************

TASK [Gathering Facts] ************************************************************************************************************************
ok: [rhv-m.example.com]
ok: [hv1.example.com]
ok: [hv2.example.com]

TASK [Register the machines to RHSM] **********************************************************************************************************
ok: [hv1.example.com]
ok: [hv2.example.com]
ok: [rhv-m.example.com]

TASK [Disable all repos] **********************************************************************************************************************
changed: [rhv-m.example.com]
changed: [hv2example.com]
changed: [hv1.example.com]

PLAY [hypervisors] ****************************************************************************************************************************

TASK [Gathering Facts] ************************************************************************************************************************
ok: [hv1.example.com]
ok: [hv2.example.com]

TASK [Enable required repositories] ***********************************************************************************************************
changed: [hv1.example.com]
changed: [hv2.example.com]

PLAY [rhv] ************************************************************************************************************************************

TASK [Gathering Facts] ************************************************************************************************************************
ok: [rhv-m.example.com]

TASK [Enable required repositories] ***********************************************************************************************************
changed: [rhv-m.example.com]

TASK [Copy Answer File] ***********************************************************************************************************************
ok: [rhv-m.example.com]

TASK [Run RHV setup] **************************************************************************************************************************
changed: [rhv-m.example.com]

PLAY RECAP ************************************************************************************************************************************
hv1.example.com : ok=5    changed=2    unreachable=0    failed=0   
hv2.example.com : ok=5    changed=2    unreachable=0    failed=0   
rhv-m.example.com       : ok=7    changed=3    unreachable=0    failed=0   

[user@ansible playbooks]$ 

Deploy your environment

Your environment is now ready to set up all the required stuff such as data centers, clusters, networks, storage etc.


- name: Deploy RHV environment
  hosts: rhv

    - ovirt-engine-vars.yml

  - name: Log in
      url: "{{ engine_url }}"
      username: "{{ username }}"
      password: "{{ password }}"
      ca_file: "{{ engine_cafile }}"
      - always


  - name: ensure Datacenter "{{ datacenter }}" is existing
      auth: "{{ ovirt_auth }}"
      name: "{{ datacenter }}"
      comment: "Our primary DC"
      compatibility_version: 4.1
      quota_mode: enabled
      local: False

  - name: Ensure Cluster "{{ cluster }}" is existing
      auth: "{{ ovirt_auth }}"
      name: "{{ cluster }}"
      data_center: "{{ datacenter }}"
      description: "Default Cluster 1"
      cpu_type: "Intel Haswell-noTSX Family"
      switch_type: legacy
      compatibility_version: 4.1
      gluster: false
      ballooning: false
      ha_reservation: true
      memory_policy: server
        - random

  - name: Ensure logical network VLAN101 exists
      auth: "{{ ovirt_auth }}"
      data_center: "{{ datacenter }}"
      name: vlan101
      vlan_tag: 101
        - name: "{{ cluster }}"
          assigned: True
          required: False

  - name: ensure host hv1 is joined
      auth: "{{ ovirt_auth }}"
      cluster: "{{ cluster }}"
      name: hv1
      password: redhat

  - name: ensure host hv2 is joined
      auth: "{{ ovirt_auth }}"
      cluster: "{{ cluster }}"
      name: hv2
      password: redhat

  - name: Assign Networks to host 
      auth: "{{ ovirt_auth }}"
      state: present
      name: "{{ item }}"
      interface: eth1
      save: True
        - name: vlan101
      - hv1
      - hv2

  - name: Enable Power Management for host1    
      auth: "{{ ovirt_auth }}"
      name: hv1
      username: admin
      password: secret
      type: ipmilan

  - name: Enable Power Management for host1
      auth: "{{ ovirt_auth }}"
      name: hv2
      username: admin
      password: secret
      type: ipmilan

  - name: Create VM datastore
      auth: "{{ ovirt_auth }}"
      name: vms
      host: "hv2"
      data_center: "{{ datacenter }}"
        address: nfs.example.com
        path: /exports/rhv/vms

  - name: Create export NFS storage domain
      auth: "{{ ovirt_auth }}"
      name: export
      host: "hv2"
      domain_function: export
      data_center: "{{ datacenter }}"
        address: nfs.example.com
        path: /exports/rhv/export

  - name: Create ISO NFS storage domain
      auth: "{{ ovirt_auth }}"
      name: iso
      host: "hv2"
      domain_function: iso
      data_center: "{{ datacenter }}"
        address: nfs.example.com
        path: /exports/rhv/iso

Run the playbook

user@ansible playbooks]$ ansible-playbook -k rhv-deploy.yml
SSH password: 

PLAY [Deplay RHV environment] *****************************************************************************************************************

TASK [Gathering Facts] ************************************************************************************************************************
ok: [rhv-m.example.com]

TASK [Log in] *********************************************************************************************************************************
ok: [rhv-m.example.com]

TASK [ensure Datacenter "Default" is existing] ************************************************************************************************
changed: [rhv-m.example.com]

TASK [Ensure Cluster "Default" is existing] ***************************************************************************************************
changed: [rhv-m.example.com]

TASK [Ensure logical network VLAN101 exists] **************************************************************************************************
changed: [rhv-m.example.com]

TASK [ensure host hv1 is joined] ****************************************************************************************************
changed: [rhv-m.example.com]

TASK [ensure host hv2 is joined] ****************************************************************************************************
changed: [rhv-m.example.com]

TASK [Assign Networks to host] ****************************************************************************************************************
ok: [rhv-m.example.com] => (item=hv1)
ok: [rhv-m.example.com] => (item=hv2)

TASK [Enable Power Management for host1] ******************************************************************************************************
changed: [rhv-m.example.com]

TASK [Enable Power Management for host1] ******************************************************************************************************
changed: [rhv-m.example.com]

TASK [Create VM datastore] ********************************************************************************************************************
changed: [rhv-m.example.com]

TASK [Create export NFS storage domain] *******************************************************************************************************
changed: [rhv-m.example.com]

TASK [Create ISO NFS storage domain] **********************************************************************************************************
changed: [rhv-m.example.com]

PLAY RECAP ************************************************************************************************************************************
rhv-m.example.com       : ok=13   changed=10   unreachable=0    failed=0   

[user@ansible playbooks]$ 

Further readings


With the help of Ansible you can automate a lot of boring tasks in a convenient way. You may even merge the two playbooks into one, be aware that the RHV-M setup will fail if its already set up.

Have fun 🙂